Ultrahigh-resolution crystallography and related electron density and electrostatic properties in proteins
نویسندگان
چکیده
With an increasing number of biological macromolecular crystal structures measured at ultrahigh resolution (1 A or better), it is necessary to extend to large systems the experimental valence electron density modelling that is applied to small molecules. A database of average multipole populations has been built, describing the electron density of chemical groups in all 20 amino acids found in proteins. It allows calculation of atomic aspherical scattering factors, which are the starting point for refinement of the protein electron density, using the MoPro software. It is shown that the use of non-spherical scattering factors has a major impact on crystallographic statistics and results in a more accurate crystal structure, notably in terms of thermal displacement parameters and bond distances involving H atoms. It is also possible to obtain a realistic valence electron density model, which is used in the calculation of the electrostatic potential and energetic properties of proteins.
منابع مشابه
High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution
Crystal diffraction data of heart fatty acid binding protein (H-FABP) in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively). These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly re...
متن کاملElectrostatic complementarity in an aldose reductase complex from ultra-high-resolution crystallography and first-principles calculations.
The electron density and electrostatic potential in an aldose reductase holoenzyme complex have been studied by density functional theory (DFT) and diffraction methods. Aldose reductase is involved in the reduction of glucose in the polyol pathway by using NADPH as a cofactor. The ultra-high resolution of the diffraction data and the low thermal-displacement parameters of the structure allow ac...
متن کاملThe experimental electron density in polymorphs A and B of the anti-ulcer drug famotidine.
Accurate structure factors have been measured for the two known conformational polymorphs (A and B) of famotidine up to a maximum resolution of sin(theta)/lambda = 1.2 A(-1) at 100 K using a conventional X-ray source and a CCD-based diffractometer. The experimental electron-density distribution was modelled using a multipole model and the interatomic interactions were analysed following the ato...
متن کاملElectron 3D crystallography of protein crystals for visualization of charges
Electron crystallography has the potential to analyze crystals of membrane proteins and macromolecular complexes too small or too thin for X-ray crystallography, as electrons are scattered 4 5 orders of magnitude more strongly than X-rays. Electron crystallography yields Coulomb potential maps, rather than electron density maps as X-rays do, providing information on charged states of amino-acid...
متن کاملCholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.
Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier resid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Synchrotron Radiation
دوره 15 شماره
صفحات -
تاریخ انتشار 2008